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AbsheL A charge carrier in a layered system experiences an additional Coulomb 
potential due to ils interaction with its own set of images. The latter arise due to the 
differences between the dieleciric properties of the layer malerials. The charge can, 
further. form bound quantum states in its own image potential. The physical situation is 
examined here for a double hetemslNcture. It is fint shown that for sufficiently large 
layer thicknessef depending on the layer materials, the ground State exhibils image- 
molecular features. Qualilalively, such features are explainable largely in terms of the 
overlap between lhe firstilrder image-induced states due to two separate interfaces. This 
h further substantiated by the numerical solution of the Schrdinger equation which 
provides predictions for a wide range of layer lhichesses by taking account of the 
multiple images. 

It is well known that dynamical image charges are induced whenever real charges 
move near the interface between two dissimilar media. The interaction between the 
charge and its own image system can, in principle, trap the particle in one of a series 
of quantum energy levels. The prototype of such quantum states are those observed 
at the liquid heliumhiacuum interface as reported long ago by Grimes el a1 [I]. 

The scope of the physics of such a situation is considerably widened by the 
advent of layered microstructures involving insulators, semiconductors, metals and 
semimetals [2]. A typical requirement of a layered microstructure system is the 
formation of quantum wells due to abrupt changes in conduction or valence band 
edges at the abrupt material interfaces. The characterization of quantum well states, 
especially the ground state, thus formed, due to band edge discontinuities, is now 
considerably advanced, so much so that quantum well lasers are engineered with 
specific requirements based on supposedly well defined quantum well attributes. 

It is precisely because microstructures offer a wide range of possibilities, in terms 
of material combinations and parameters, that we examine here the significance of 
image-type effects in that context and the possibility of their modifying the optical 
and electronic characteristics of such systems. It turns out that, besides expected 
modifications to characteristic energies, the problem exhibits some new features which 
are worthy of special emphasis. 

Consider therefore a double heterostructure composed of a layer of material 1 
sandwiched between two much thicker layers of material 2. The complete image 
potential for an electron inside layer 1 is obtained simply by summing up contributions 
from multiple images to all orders. We have 

0953-8984/93/142137+06$07.50 @ 1993 IOP Publishing Lid 2137 



2138 M Babiker 

where z(0 < z < L) is the position of the particle relative to one of the interfaces 
y is given by 

with c1 and 
assume that 

7 = (€1 - CZ)/(EZ + €1) (2) 
the electric permittivities of materials 1 and 2, respectively, where we 
> E ~ .  The quantity eo is defined by 

(3) e2 - 2 - e /4nrl 

and L is the layer width of material 1. 
In a typical double heterostructure, material 1 would be a semiconductor with 

a lower band gap than material 2. Then in the absence of any image effects the 
potential in material 1 is taken as V, corresponding to the bottom of the conduction 
band for electrons. The complete potential including quantum well image effects is 
therefore given by 

VL = y f v, 

- (hZ/2")azll,(r)/az2 + VL(Z)$%(Z) = W"$,,(Z) 

(4) 
and the required states are obtainable by the solution of the one-dimensional 
Schriidinger equation 

(5) 
where m* is the effective mass in material 1, where the particle is confined. Since 
exact analytical solutions of equation (5) do not exist, we are forced to resort either 
to approximation methods or make use of numerical techniques. In what follows we 
first seek an approximate analytical solution and then we describe the results of the 
numerical method. 

Consider first a physically transparent initial approximation in which the width 
L is assumed to be sufficiently large that the physics of the situation can be viewed 
as predominantly due to the two separate interfaces The motion of the charged 
particle is then determined primarily by the first-order image approximation which 
corresponds to the potential in equation (1) having only the three leading terms, two 
(first order in y)  arising from the interaction of the particle charge with its two first 
images and a third term (second order in y) is the interaction between the first- 
order images. Note that the first-order images are always separated by a distance 2L 
irrespective of the position z of the real charge. We write 

vL(z) = - 0 eiy/4 [ I / Z  t 1 / ( L  - z ) ]  + eiy2/2L. (6) 
The situation is reminiscent of the well known two-centre problem of the hydrogen 
molecule ion. In the present case onedimensional case each centre corresponds 
to an interface and we need therefore to outline the formalism and results for the 
single-interface eigenproblem. For motion near the interface at z = 0 we have 

- (fi2/2m')aZ4,/~z2+ (\: - e i y / 4 r ) 4 , ,  =Em& (7) 
and for that near the interface z = L we have an identical equation by writing 
L - z = 5 instead of z .  The exact solutions of equation (7) are well known [3]. We 
have the eigenenergies 

E,, = V, - e:y2/32a'n2 (8) 

a* = h'/m'e: (9) 

where a*, defined by 
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is an effective Bohr radius, which we shall adopt as a convenient length scale of the 
problem. The ground-state eigenfunction corresponding to El is given explicitly by 

+ l ( r )  = ~ ( y / 4 a * ) ~ " z " x P ( - z y / 4 u * ) .  (10) 
For orientation as to the order of magnitude for the ground state El and the effective 
Bohr radius a* we consider two different cases of the single heterastructure. 

(A) The vacuudperfect conductor case corresponds to y = 1; e, = E,  and 
m' = me. We have 

El = V ,  - 850 meV a* = a B (11) 
where aB is the conventional Bohr radius. The electron moving in vacuum near the 
perfect conductor surface is thus tightly bound to the surface. We can also check that 
the expectation value of z in the ground state is (z)+, = 4aB. In practice the average 
surface roughness introduces a length scale which is larger than ag. 

(B) The semiconductor/metal interface corresponds to the choice 

y U 1.0 m* Y OSm, e l  = 106. (12) 

El = V, - 4.1 meV (13) 

We have in this case 

a* = aB ( elme/eOm*) 20aB (14) 

(Z)+) = 4u*/y zz 40 A. (15) 

Clearly the electron in this latter case is weakly bound to the surface with a 
ground-state energy about 4 meV below the conduction band edge, and the average 
distance can be safely assumed to be much Iarger than a typical surface roughness 
length. 

An approximate solution of equation (5), appropriate for the ground state of the 
double heterostmcture, is obtained by writing & ( z )  as a linear combination of single 
interface functions &( z )  and &(L - 2): 

$I(z) = cu4dz) t C L @ L ( Z )  (16) 

4" = 4 l ( Z )  4 L  = 4 L ( L  - 2). (17) 

where 

We seek the symmetric solution (corresponding to c,, = cL)  by analogy with the 
hydrogen molecule ion case [4]. We find 

Wa = ( H w  + HuL)/ ( l  + S )  t V, t e:yZ/2L (18) 
where 

S is the overlap integral in the region 0 < z < L: 
s = (4"IdK). 
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Straightfomard evaluations of the integrals yield for W," 

where 

G = 1 - exp(-Ly/Za*)  (1 f Ly/2a*  + yZL2/8a") (3) 

s = ( ~ ~ L ~ / % a * ~ ) e x p ( - ~ y / 4 a * ) .  (24) 

Clearly as L -* CO, we have Wf - El ,  where E, is given by equation (8). 
It therefore seems appropriate to argue along the hydrogen molecule ion lines 

and speak of an image molecule composed of the electron in the fields of its two first- 
order images. The above result, equation @), gives W," as the first approximation 
of the ground-state energy of such an image molecule as a function of the layer 
width L. Like the hydrogen molecule ion case one expects a minimum to occur 
at some value of L, L(min), corresponding to stable equilibrium. The minimum 
value of the ground-state energy predicted by the current approximation, as shown 
in figure 1, suggests that a stronger binding of the electron results from the process 
of overlapping of the first-order image effects at finite layer thickness. Although 
the analytical approximation method used above is physically transparent and has 
led to the prediction of the image-molecule-type features shown in figure 1, any 
quantitatively useful predictions would need more accurate solutions of the problem. 

F@re t Variation of the (y = 0.3) appmximate 
ground-state energy Wp with layer width L. Energy 
is measured in units of half and a%&& Rydkrg 
(@2a*) and lengths in units of a.. The dashed 

-1011 horizontal line is the a m o t o t e  L - m wherc . 
[ U , ,  , , , , I Wp - E1 = y2/16. The.&ttotom of the conduction Eourl 60 4 la m 80 w m -awn 

I/.* band V. corresponds to zero energy. 

We have, therefore, adopted numerical methods to solve equation (5) including 
higher-order image contributions, as given in equation (1). The results displayed in 
figure Z(u) and 2(b) are those for particular values of y: figure 2(u) has y = 1.0 
and figure 2(b) has y = 0.3. It is seen that for both values of y the ground-state 
energy for this more accurate evaluation does indeed exhibit the important qualitative 
feature emerging from the previous method, namely the image-moleculetype effects 
indicated by the appearance of an energy minimum. The results suggest that higher- 
order image effects can contribute significantly to the binding energy and determine 
more accurately the value of L(min). The manner in which the overlap manifests 
itself as L is decreased is shown in figure 3, which traces the ground-state probability 
distributions for the case y = 0.3 (corresponding for figure q b ) )  from a large value 
of L, exhibiting quasi-independent interface effects to the region near the minimum, 
where overlap effects are significant. Figures 2(u) and 2(b) also exhibit the variations 
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Figure 2. Variation with L of the lowest three eigenvalues of the Schminger equation (5) 
evaluated numerically for the cases (U) y = 1.0 and (b) 7 = 0.3. The energy and length 
scales are as de6ned in the caption to figure 1. 

Figure 3. Unnormalized ground-state probability Figure 4. Variations in the region of small L of the 
dstributions for the case y = 0.3 and for (L = three lowest eigenvalues of equation (5) evaluated 
400~~. curve a), (L = 1M)a' curve b), (L = u)a* numerically for the case y = 0.3 as shown by the 
c u m  c). full curves. These a w e s  are, therefore, small-L 

extensions of those in figure qb).  "he dotted 
a m e s  are the corresponding energy eigenvalues in 
the absence of image effcxzts 

of W, and W, with L. Clearly in the regions of variation shown all three lowest- 
energy states have values below the conduction band minimum. This is a marked 
departure from the usual quantum well states in the absence of image effects. 

Figure 4 displays for the case 7 = 0.3 the variation of W,, W, and W, in a 
region of smaller L (where all energies are above the conduction band minimum) 
and compares these with the corresponding variation of the conventional quantum 
well energies obtainable analytically in the absence of image effects (equivalent to 
setting y = 0 throughout). We have 

W,(y = 0) = (u"n".'/L~)(4/2u') + v,. (2.5) 
It is seen from figure 4 that the image effects can produce important modifications 
of the lowest eigenenergies in this region of small L, depending on the type of 
heterostructure. For example, for L = 4 . 0 ~ '  changes of the order of 30% in the 
ground-state energy can arise due to such image effects. In the example represented 
by the parameters given in equation (12) L E 4u* corresponds to L Y 40 A which is a 
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typical quantum well width. It must therefore be emphasized that the small L region 
refers to small values of the ratio L / d ,  which could be small or large depending 
on the value of a'. The present treatment should be appropriate for small values of 
L/a' provided that a* is sufficiently large. 

In conclusion we have investigated the effects of the self-image contribution on 
the confinement of charged carriers in double heterostructures. The results show 
that, in general, image effects can contribute significantly to the properties of charged 
carriers in such structures. An interesting feature of the results is the prediction of 
L(min) for a given pair of materials and the way in which the ground state exhibits 
the imagemolecular characteristics discussed above. The effects are clearly enhanced 
in absolute terms for pairs of materials resulting in (i) a relatively large value of y, (ii) 
a moderately large value of the carrier effective mass m', and (iii) a relatively small 
dielectric permittivity of the layer. These criteria imply that image effects are likely to 
be small in alloy 111-V semiconductor structures (for example GaAslGaAlAs) which 
exhibit small y and m* and a relatively large permittivity for GaAs. By contrast the 
effects appear to be important for cases of free-standing structures such as Sihacuum 
and also for semiconductor/metal and semiconductor/insulator pairs for which some 
(if not all) of the above three criteria are satisfied. 

In the recent literature interest in image charges in heterostructures has 
concentrated primarily on the modifications they cause to exciton binding energies 
[5,6] and to impurity levels [7-91 as the layer width L varies. Such changes are 
brought about by a combination of self-image interactions and image-modified inter- 
particle interactions. The existence of characteristic layer widths L(min) of the type 
discussed in this paper for single charges suggests that analogous effects should be 
exhibited in the cases of excitons and hydrogenic impurity levels in heterostructures. 
Investigations along these lines are now in progress. 
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